Generalizing RCT findings to a Target Population

Randomized controlled trials (RCTs) are considered the gold standard for estimating the causal effect of a drug or intervention in a study sample. However, while RCTs have strong internal validity, they often have weaker external validity, making it difficult to generalize trial results from a “non-representative” study sample to a broader population. This makes it challenging for policymakers to accurately draw population-level conclusions from trial evidence.

Given increasing concern about potential lack of generalizability of RCT findings, statistical methods have recently been proposed to estimate population average treatment effects by supplementing trial data with target population-level data. For my dissertation, I am conducting research on how to better assess and improve upon the external validity of randomized trials using these post-hoc quantitative methods. My work thus far has focused on synthesizing existing literature for non-statistician audiences, developing an R package for easy implementation of the methods, and deriving sensitivity analyses for unobserved effect modification.


(2019). Implementing Statistical Methods for Generalizing Randomized Trial Findings to a Target Population. In AddictBeh.

PDF Project


Sensitivity Analysis for an Unobserved Moderator in Trial-to-Target-Population Generalization of Treatment Effects
Mar 1, 2018 10:30 AM
Estimating Population Effects: Case Study of Generalizing Results of a Methamphetamine Trial
Jan 11, 2018 2:00 PM